Full width home advertisement

Post Page Advertisement [Top]

Find Square of 1 to 1000 Numbers Within a Few Seconds Using Vedic Mathematics


Find Square of Any Number Within a Few Seconds, find square of a number, find square of a number easily by vedic maths, how to find square of any number easily
Find square of number

You are here because you want to know how to find Square of any number quickly without using more calculation. Applying few simple step we get square of any number. Here I described two methods and are applied for only 1 to 1000 numbers. So let's start.

Method 1 :


This method is applicable for only two digits numbers. Let's try to understand it with help of example.

Example 1 : (87)2


Step 1 - 
First multiply the given number's digits 8 and 7 with 2

               i.e.    8 × 7 × 2 = 112

Step 2 -
Now take its digits square and write it as 

             (8)2 (7)2

              6449

Note :
Always take two digits of square, if it not then take it with zero. For example, (2)2 = 4 then write 04 instead of only 4.

Step 3 -
Now add the number we received in step 1 by multiplying 10
            
             i.e.    6449
                  + 1120
                  = 7569

             which is the square of 87
             thus  (87)2 = 7569

Example 2 : (32)2

Step 1 -
First multiply the given number's digits 3 and 2 with 2

               i.e.    3 × 2 × 2 = 12

Step 2 -
Now take its digits square and write it as

             (3)2 (2)2

              0904

Step 3 -
Now add the number we received in step 1 by multiplying 10
            
             i.e.    0904
                  +   120
                  = 1024

             which is the square of 32
             thus  (32)2 = 1024

Method 2 :


This method is applicable for two & three digits numbers. Even though method one is easiest for two digits numbers. Lat's take a look at the example.

Example 1 : (87)2


Step 1 -
First decide the number which is nearer to the given number which has zero.
Here the number 90 is nearer to 87.

Step 2 -
We have to add 3 to make 90 from 87.

              +3
              87
              -3

             (87 + 3) × (87 - 3) | (3)2

               90 × 84 | 09

Step 3 -
Now we decide by 10 to 90 × 84. As 10 has one zero we have just one degit in the 09 and other will be taken as carry.

             i.e. 9 will be as it is and 0 will be carry.
             
             Now, we get
              
             90 × 84 ÷ 10 | 09

             9 × 84 | 09

             756 | 09

             75(6 + 0)9

             7569 

             Which is the square of 87.

Example 2 : (213)2


Step 1 -
First decide the number which is nearer to the given number which has zero.
Here the number 200 is nearer to 213.

Note :
We can take 210 instead of 200 and answer will not be changed.

Step 2 -
We have to add 13 to make 200 from 213.

              -13
              213
              +13

             (213 - 13) × (213 + 13) | (13)2

             200 × 226 | 169

Step 3 -
Now we decide by 100 to 200 × 226. As 100 has two zero we have just two degits in the 169 and other will be taken as carry.

             i.e. 69 will be as it is and 1 will be carry.
             
             Now, we get
              
             200 × 226 ÷ 100 | 169

             2 × 226 | 169

             452 | 169

             45(2 + 1)69

             45369

             Which is the square of 213.

I hope you will be understood. For any questions about this method comment your thoughts.

No comments:

Post a Comment

Bottom Ad [Post Page]

| Designed by Colorlib